THE PUZZLE VAULT
1. Four areas
1. Four Areas
2. Digit sums
2. **Digit Sums**

- Take any positive whole number n.
2. Digit sums

- Take any positive whole number n.
- Prove there exists a multiple of n whose digit sum is odd.
3. The Superfrog
3. The Superfrog

- Starts at zero.
3. **THE SUPERFROG**

- Starts at zero.
- Every second the frog jumps n to the right.
3. **The Superfrog**

- Starts at zero.
- Every second the frog jumps n to the right.
- After one second we decide we want to catch him.
3. The Superfrog

- Starts at zero.
- Every second the frog jumps \(n \) to the right.
- After one second we decide we want to catch him.
- Every second (starting from 1 second) we check a number.
3. The Superfrog

- Starts at zero.
- Every second the frog jumps \(n \) to the right.
- After one second we decide we want to catch him.
- Every second (starting from 1 second) we check a number.
- We don’t know what \(n \) is.
3. The Superfrog

- Starts at zero.
- Every second the frog jumps n to the right.
- After one second we decide we want to catch him.
- Every second (starting from 1 second) we check a number.
- We don’t know what n is.
- Find a strategy that guarantees capture.
3. The Superfrog

- Starts at zero.
- Every second the frog jumps n to the right.
- After one second we decide we want to catch him.
- Every second (starting from 1 second) we check a number.
- We don’t know what n is.
- Find a strategy that guarantees capture.
- What if the frog picks the direction?
3. THE SUPERFROG

- Starts at zero.
- Every second the frog jumps \(n \) to the right.
- After one second we decide we want to catch him.
- Every second (starting from 1 second) we check a number.
- We don’t know what \(n \) is.
- Find a strategy that guarantees capture.
- What if the frog picks the direction?
- What if the frog picks the starting number?
4. **Odd Factors**
4. **Odd factors**

- 4
4. Odd factors

- 4
- (5)
- (6)
- (7)
- (8)
4. Odd factors

- 4
- (5) 5
- (6) 3
- (7) 7
- (8) 1
4. Odd factors

- 4
- (5) 5
- (6) 3
- (7) 7
- (8) 1

\[16 = 4^2 \]
4. **Odd factors**
4. Odd factors

Let \(n \) be a positive whole number, and consider the largest odd factors of \(n+1, n+2, n+3, \ldots, 2n \).
4. Odd factors

Let n be a positive whole number, and consider the largest odd factors of $n+1$, $n+2$, $n+3$, ..., $2n$.

Prove that their sum is n^2.
Links
Links

- puzzlecritic.wordpress.com
- @puzzlecritic
Links

- puzzlecritic.wordpress.com
- @puzzlecritic

- danielthepianist@gmail.com
LINKS

- puzzlecritic.wordpress.com
- @puzzlecritic
- danielthepianist@gmail.com

THANK YOU!