The constant $F$ . . . Wau
. . . a truly singular number
The Mathematical Constant Wau … F

• Symbol F … pronounced wau, is the obsolete Greek letter Digamma.

• I was first introduced to Wau by the American Mathematics Vihart

• It is mathematical constant and was known to the Ancient Greeks, Babylonians and Egyptians.

• Has more than one way of representing it as an infinite decimal.

• Arguably more important than $\pi$, $\phi$, i or e

• Zeno, Pythagoras and Ptolemy knew of it.
\[ = F \]
Some of my favourite properties of Wau

- $\Gamma(F) = \frac{1}{F}$ and $\Gamma\left(\frac{1}{F}\right) = F$

- $F^\pi F^{(2\pi)} F^{(3\pi)} \cdots$

- $F^{\pi} F^{(2\pi)} = F \sqrt[2]{F} \sqrt[3]{F} \sqrt[4]{F^2} \sqrt[5]{F^3} \sqrt[6]{F^4} \cdots$

- $e^{\tau i} = F$

- $\sum_{k=1}^{\infty} \frac{1}{k} = \zeta(F)$
More properties of Wau

\[ \varphi = F + \frac{1}{F + \frac{1}{F + \frac{1}{F + \cdots}}} \]

\[ F = \frac{y + \frac{x}{y}}{y + \frac{y}{x}} \]

If \( \frac{x}{y} = F \)

\[ \frac{x + \frac{x}{y}}{x + \frac{y}{x}} \]

\[ \frac{y + \frac{y}{x}}{x} \]
F is one of the most important and interesting numbers in mathematics

Please tell me your favourite property of Wau

- Write it on paper and leave on the box of chocolates
- Take a chocolate
That’s all folks