
Dual numbers
Miles Gould

@pozorvlak@mathstodon.xyz







Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.381 VMLADAV Vector Multiply Add Dual Accumulate Across Vector. 

The elements of the vector registers are handled in pairs. In the base variant, corresponding elements from the two source 
registers are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first 
source register, before multiplying them with the values from the second source register. The results of the pairs of multiply 
operations are combined by adding them together. At the end of each beat these results are accumulated and the lower 32 
bits written back to the general-purpose destination register. The initial value of the general-purpose destination register can 
optionally be added to the result.



Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.381 VMLADAV Vector Multiply Add Dual Accumulate Across Vector. 

The elements of the vector registers are handled in pairs. In the base variant, corresponding elements from the two source 
registers are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first 
source register, before multiplying them with the values from the second source register. The results of the pairs of multiply 
operations are combined by adding them together. At the end of each beat these results are accumulated and the lower 32 
bits written back to the general-purpose destination register. The initial value of the general-purpose destination register can 
optionally be added to the result.



Complex numbers

● 2d vectors

● Write “a + ib” for (a, b)

● “Real” and “imaginary” parts

● (a + ib) + (c + id) = (a + c) + i(b + d)

● i² = -1

● (a + ib) (c + id) = (ac - bd) + i(bc + ad)

a + ib



Dual numbers

● 2d vectors

● Write “a + εb” for (a, b)

● “Body” and “soul”

● (a + εb) + (c + εd) = (a + c) + ε(b + d)

● ε² = 0

● (a + εb) (c + εd) = (ac + bd) + ε(bc + ad)

a + εb



You have seen these formulae before!

(a + εb) + (c + εd) = (a + c) + ε(b + d)

(a + εb) (c + εd) = ac + ε(bc + ad)

(f(x) + g(x))’ = f’(x) + g’(x)

(f(x)g(x))’ = f’(x)g(x) + f(x)g’(x)



Automatic differentiation

f(x + ε) = f(x) + ε f’(x)

f(x + ε)

f(x)ε



Does it work?

Let f(x) = x

f(x + ε) = x + ε



Does it work?

Let f(x) = x²

f(x + ε) = (x + ε)²

= x² + 2xε + ε²

= x² + 2xε



Does it work?

Let f(x) = x3

f(x + ε) = (x + ε)3

= x3 + 3x2ε + 3xε2 + ε3

= x3 + 3x2ε



Does it work?

Let f(x) = xn

f(x + ε) = (x + ε)n

= xn + nxn-1ε + …

= xn + nxn-1ε



Yes!

● Powers of n work
● Sums and products work
● So polynomial functions work
● So approximations to power series work
● But in fact, arbitrary code works
● We can extend this to higher or partial derivatives



Why do we care?

Physics simulations!

Computer graphics!

Gradient descent!



Historical note

● I first learned about these from Dan Piponi
● He used them in 2005 to do special effects for the Matrix sequels
● At the time they weren’t widely-known in the graphics community
● But apparently Yoshua Bengio’s deep-learning group already knew about 

them
○ “Source: rooftop beers” – Paul Khuong


