Dual numbers

Miles Gould
@pozorvlak@mathstodon.xyz

v i | (10F2,147) — | + 110% v [Arg

I
—
Y
&

Contents
> Preface

> A Armv8-M Architecture
Introduction and Overview

¥ B Armv8-M Architecture
Rules

b it Armev8-M Architecture Reference Manual
» B3 Programmers’ Model

B4 Floating-point
Support

v

B5 Vector Extension

P> B6 Pointer
authentication and
branch target
identification Extension

> B7 Memory Model

I
—
Y
&

Contents
> Preface

> A Armv8-M Architecture
Introduction and Overview

¥ B Armv8-M Architecture
Rules

b it Armev8-M Architecture Reference Manual
» B3 Programmers’ Model

B4 Floating-point
Support

v

B5 Vector Extension

P> B6 Pointer
authentication and
branch target
identification Extension

> B7 Memory Model

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.381 VMLADAV Vector Multiply Add Dual Accumulate Across Vector.

The elements of the vector registers are handled in pairs. In the base variant, corresponding elements from the two source
registers are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first
source register, before multiplying them with the values from the second source register. The results of the pairs of multiply
operations are combined by adding them together. At the end of each beat these results are accumulated and the lower 32
bits written back to the general-purpose destination register. The initial value of the general-purpose destination register can
optionally be added to the result.

Chapter C2. Instruction Specification
C2.4. Alphabetical list of instructions

C2.4.381 VMLADAV Vector Multiply Add Dual Accumulate Across Vector.

The elements of the vector registers are handled in pairs. In the base variant, corresponding elements from the two source
registers are multiplied together, whereas the exchange variant swaps the values in each pair of values read from the first
source register, before multiplying them with the values from the second source register. The results of the pairs of multiply
operations are combined by adding them together. At the end of each beat these results are accumulated and the lower 32
bits written back to the general-purpose destination register. The initial value of the general-purpose destination register can
optionally be added to the result.

Complex numbers

atib

2d vectors

Write “a + ib” for (a, b)

“‘Real” and “imaginary” parts
(@a+ib)+(c+id)=(a+c)+i(b+d)
i2=-1

(@a+ib) (c+id) = (ac - bd) + i(bc + ad)

Dual numbers

e 2d vectors

e Write “a + ¢b” for (a, b)
ateb e “Body” and “soul”
o (at+teb)+(c+ed)=(a+c)+eb+d)

e ¢2=0

e (a+eb)(c+ed)=(ac+bd)+ g(bc+ ad)

You have seen these formulae before!
(@+teb)+(c+ed)=(a+c)+eb+d) (f(x)+g(x)) =f(x)+g(x)

(a + €b) (c + ed) = ac + ¢(bc + ad) (f(x)g(x))" = F(x)g(x) + f(x)g'(x)

Automatic differentiation

f(x + €) = f(x) + € f(x)

Does it work?

Let f(x) =x

f(x+e) =x+¢

Does it work?

Let f(x) =x?
fix+€) =(x+¢)y
= X>+ 2xe + €2

= X% + 2x¢

Does it work?

Let f(x) =x°
f(x+¢€) =(x+¢g)
= x> + 3x% + 3xe? + ¢°

= x> + 3x%

Does it work?

Let f(x) =x"

fx+¢€) =(x+e¢g)

=x"+nx"eg + ...

= x" + nx"'e

Yes!

Powers of n work

Sums and products work

So polynomial functions work

So approximations to power series work

But in fact, arbitrary code works

We can extend this to higher or partial derivatives

Why do we care?

Physics simulations!
Computer graphics!

Gradient descent!

Historical note

| first learned about these from Dan Piponi

He used them in 2005 to do special effects for the Matrix sequels

At the time they weren’t widely-known in the graphics community

But apparently Yoshua Bengio’s deep-learning group already knew about

them
o “Source: rooftop beers” — Paul Khuong

