Your Own AlphaGo

Advanced Play using only a Laptop

By Niall Cardin

niallc@gmail.com

A Machine that Plays Games

When | was a teenager | found a program called Igowin.
It was so cool that it could play go!

How can it do that?

Back in 1998 though, computers weren’t good at Go.

(People had tried neural nets!) Author: David Fotland
Smart Games LLC

AlphaGo

2016: DeepMind’s AlphaGo surpassed humans.

| bumped into David Fotland (&) at a party!

He told me it wasn’t that hard, read the paper.

Article Published: 27 January 2016
Mastering the game of Go with deep neural networks
and tree search

David Silver &, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,

Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,

Dominik Grewe, John Nham, Nal Kalchbrenner, llya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel & Demis Hassabis &

Nature 529, 484-489 (2016) | Cite this article

6 NGO \eeSeda\

-\
A\

Can a hobbyist make “an AlphaGo™?

It works fine if you just try but it might
disappoint after a while

Want to touch on one important detail

(On Iy have 5 minutes SO I Can’t talk abOUt eVerything I'd like to, there’sreaHyaIotmoremsnyv)

/Note: others' did \

this way before me,

Using one laptop you can produce and better.

advanced, if not superhuman, play. 'Leela, KataGo, ..

(&)

https://sjeng.org/leela.html
https://github.com/lightvector/KataGo

What can a Neural Network do?

For our purposes a neural network is a “powerful function fitter”.

Step 1: Train on many ‘labeled’ examples of A » B.
Step 2: You have an unlabeled A" ask the network for B'.

How: Neural nets are like stacked regression models that insert
‘hidden’ intermediate nodes. We then update to find good
intermediate values via “back propagation” using “automatic
differentiation”.

This approach turns out to be hugely flexible, so it can learn to
map many different types of A » B

How does this help us play games?

- Bluebird\

- Blackbird

- Not a bird

- 277

/

Playing Games with Neural Networks — Policy

What is playing a game? Why is it mapping A » B? / A - B \

: : : - [X
You repeatedly make a move given your situation.
' 4
So we're mapping (game-state » move) < : ><O
Given some games we can feed them to a neural network
and it will learn to copy the moves. §O . >>§O
O
This let’s us effectively imitate moves from a dataset IO o
% .7
O

The full design lets play better than the training. \\

If there’s time (unlikely), we can talk about the fuller design

Is Training Going Well?
Training minimizes a loss function. Over time, loss usually improves.

That’s not always better.

1. The games we train on may not be the best
2. The model may fit too narrowly, to those specific games

Better evaluation: Do we win more games?
Hold tournaments between training checkpoints.

Computers but mostly do the same thing every time, by default

Randomness

Our network roughly produces a probability for each possible next move:

e 47% = Move 1
e 18% = Move 2
9% = Move 3

e 0.01% =» Move 361
We could play be choosing each move with that probability.

There are other (better) schemes for randomness, but this will do here.

Which model is better?

Suppose typical move values we as below:

Model 1

Model Real

Score Value
Move 1 90% 7/10
Move 2 5% 5/10
Move 3 2% 3/10
Move 13 | 0.01% 10/10

Model 2

Model Real

Score Value
Move 1 35% 10/10
Move 2 15% 7/10
Move 3 10% 510

E_

With randomness,
model 2 will play many
bad moves.

Without randomness,
model 2 plays great
moves. Model 1 plays
decent but not great
moves.

Intuitively, I’'d actually
prefer Model 2 to
Model 1.

A Better Evaluation

Have a library of existing games already
Sample a unique collection of openings
Play deterministically from those openings

Have each contestant play first per opening.

Winner: Model that’s best at picking the best move

X

Model 1 first

< Model 2 first

Model 1 first

< Model 2 first

Model 1 first

< Model 2 first

Model 1 first

< Model 2 first

/

Extra Time: Value Network

Learning to play better than the training data —
the really cool part

A 2nd “value” network maps position = probability
of a win.

This allows reading ahead to evaluate moves with
tree search. Efficient tree search can gives games
better than the training data.

lterate training = self-play = training.

Value Network

e

- 50%

- 52%

X

- 54%

- 50%

<

OXIX XX

-

/

If there’s time (unlikely), we can talk about the fuller design

Extra Time 2 — Returning to Evaluation

To use self-play » new training data, we need to use randomness again.
Does that mean evaluating deterministic play isn’t quite right?

Ultimately the ideal solution is:

1. Decide how much randomness you need

2. For each model, tune the tree search to be as strong as possible, given 1.
3. Choose the best (model, tree search) combination to create new games

But this is computationally expensive. So without infinite compute we need to take
shortcuts and use intuition. I've had good results using randomized openings.

Thanks for Listening!

Try it out!

A program to play hex (great game!). ‘s%

sf25.niallcardin.com

github.com/niallc/Snowflake2025

http://sf25.niallcardin.com

